For an isosceles prism of angle A and refractive index μ , it is found that the angle of minimum deviation $\delta_m = A$. Which of the following option(s) is/are correct?

This question has multiple correct options

At minimum deviation, the incident angle $_{i_1}$ and the refracting angle $_{r_1}$ at

A the first refracting surface are related by $r_1 = (i_1/2)$

For this prism the refractive index μ and the angle of prism A are related as $A = \frac{1}{2} \cos^{-1} \left(\frac{\mu}{2}\right)$

For this prism, the emergent ray at the second surface will be tangential to the surface when the angle of incidence at the first surface is i₁ =

$$\sin^{-1}\left[\sin A\sqrt{4\cos^2\frac{A}{2}-1}-\cos A\right]$$

For the angle of incidence i1 = A, the ray
 inside the prism is parallel to the base of the prism

Solution

Correct options are A), C) and D)

Option A

We know for minimum deviation, $i_1 = \frac{A + \delta_m}{2}$ (δ_m : angle of minimum deviation) Given $\delta_m = A$ Hence $i_1 = A$ Now, for minimum deviation condition $r_1 = A/2$ Hence $r_1 = i_1/2$ Correct

Option B

$$\mu = \frac{\sin(i_1)}{\sin(r_1)}$$

$$\mu = \frac{\sin(\frac{A + \delta_m}{2})}{\sin(A/2)}$$

$$\mu = \frac{\sin A}{\sin A/2} = 2 \cos A/2$$
Incorrect

Option C

Emergence = 90°

 $\sin r_2 = \mu$

 $r_2 = Sin^{-1} \mu$

Also $r_1 = A - r_2$

 $sini_1 = \mu sinr_1$

 $sini_1 = \mu sin(A - r_2)$

 $sini_1 = \mu(sinA \cos r_2 - \cos A \sin r_2)$

But $\mu \operatorname{sinr}_2 = 1$

 $\sin i_1 = \mu \sin A \cos r_2 - \cos A = \sin A \sqrt{4 \cos^2 A/2 - 1} - \cos A$ Correct